Suppression of vortex shedding for ow around a circular cylinder using optimal control

نویسندگان

  • C. Homescu
  • I. M. Navon
  • Z. Li
  • Z. LI
چکیده

Adjoint formulation is employed for the optimal control of ow around a rotating cylinder, governed by the unsteady Navier–Stokes equations. The main objective consists of suppressing Karman vortex shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can be constant in time or time-dependent. Since the numerical control problem is ill-posed, regularization is employed. An empirical logarithmic law relating the regularization coe?cient to the Reynolds number was derived for 606Re6140. Optimal values of the angular velocity of the cylinder are obtained for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational optimal control method agree with previously obtained experimental and numerical observations. A signiAcant reduction of the amplitude of the variation of the drag coe?cient is obtained for the optimized values of the rotation rate. Copyright ? 2002 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Field Around a Circular Cylinder with Periodic Vortex Shedding

A numerical study is carried out to investigate the laminar forced convection heat transfer from a circular cylinder. The fluid is assumed to be incompressible, the Reynolds number ranged from 0.1 to 1000, and the Prandtl number was equal to 0.7. The range of study includes heat transfer in creeping flow (Re40). The equations were discretized by a control-volume-based finite difference techniqu...

متن کامل

Effects Of Frequency Variation At Inlet Flow On The Vortex Shedding Frequency Behind A Circular Cylinder

In many applications the flow that past bluff bodies has frequency nature (oscillated) and it is not uniform. This kind of flow has effects on the formation of vortex shedding behind bluff bodies. In this paper the flow around a circular cylinder was numerically simulated. The effects of frequency variation at inlet flow on the vortex shedding frequency were investigated. The transient Two-Dime...

متن کامل

Suppression of Vortex Shedding from a Circular Cylinder by using a Suction Flow Control Method

An experimental study was conduct to suppress the vortex shedding from a circular cylinder by using a suction flow control method. The suction flow control was accomplished using two suction holes located on the test cylinder model at an angle of 90.0 degrees in relation to the oncoming flow direction. In addition to measuring the pressure distributions around the test model, a high-resolution ...

متن کامل

Suppression of Unsteady Vortex Shedding from a Circular Cylinder by Using a Passive Jet Flow Control Method

A passive jet flow control method was employed to suppress the unsteady vortex shedding from a circular cylinder at the Reynolds number level of Re= (0.18~1.1)×10. The passive jet flow control was achieved by blowing jets from the holes near the rear stagnation point of the cylinder, which are connected to the in-take holes located near the front stagnation point through channels embedded insid...

متن کامل

Simulation of Premixed Combustion Flow around Circular Cylinder using Hybrid Random Vortex

This research describes the unsteady two-dimensional reacting flows around a circular cylinder. The numerical solution combines the random vortex method for incompressible two-dimensional viscous fluid flow with a Simple Line Interface Calculation (SLIC) algorithm for the propagation of flame interface. To simplify the governing equations, two fundamental assumptions namely Low Mach Number and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001